
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

UNIVERSITY OF SOUTHAMPTON

Philip Richard Boulain

3rd February 2006

Mandala: A Portal Engine

ELEC6025 Advanced Computer Graphics

Abstract

Mandala is a project to implement a practical portal engine—one
where worlds are created out of ‘sectors’ of isolated space, linked by
‘portals’—and demonstrate some of the advantages this approach has
over conventional BSP-based engines. Zone portals, and derivatives
such as antiportals, have been, and still are, often used for visibility de-
termination in large sections of geometry; Mandala, however, is a ‘full’
portal engine, which allows for non-Euclidean geometry and ‘folded
space’. It also provides an architecture upon which to build applications
(such as games) using the engine.

This report highlights the difficulties in designing and implementing
such an engine.

i

Contents

Contents ii

Acknowledgements iii

1 Introduction and Background 1

2 Analysis 2
2.1 Existing systems . 2
2.2 Goals . 3

3 Design 4
3.1 Architecture . 4

3.1.1 Overview . 4
3.1.2 Control system . 5
3.1.3 Entities . 5

3.2 Relevant light set . 6

4 Implementation 6
4.1 Technologies . 6
4.2 Portal mapping . 6

4.2.1 Graphical . 6
4.2.2 Point . 7

4.3 Results . 8

5 Testing 10

6 Evaluation 10
6.1 Reflection . 10
6.2 Future work . 11

References 12

A CD Contents 13
A.1 Building Mandala from source 13

A.1.1 Requirements . 13
A.1.2 Build options . 13
A.1.3 Building under UNIX R©-like platforms 14
A.1.4 Building under Windows R© 14

A.2 Controls . 14

ii

Acknowledgements

Thanks to Harry Mason for his initial support for the idea of attempting a full
portal engine, and for suggesting some of the applications. Great thanks to
Jim Gerrard for taking an interest in the problems of dealing with multiple
co-ordinate systems and deriving the matrix transforms which map points
into an aligned, polygon-relative co-ordinate system and back.

iii

1 Introduction and Background

Visibility culling is an important part of real-time 3D graphics engines. It
is often worthwhile to perform some simplistic (and thus fast) checks to
determine if coarse sections of the environment and its contents are outside
of the possible visible area; thus preventing time from being spent, either
by the CPU or GPU, further clipping them against the view frustrum and
performing Z-buffer tests.

Portals are one method to achieve this. The environment is carved into
sections, usually termed ‘sectors’, which are ideally concave, at least to a ba-
sic approximation. Objects may be placed within these sectors, with their
visibility tied to the sector containing them. Between the sectors are placed
‘portals’, which are invisible polygons covering all the joins. Optimal places
for these sectors are usually in doorways, and from corners of major obstruc-
tions such as pillars to the corners of rooms.

The portal-based visibility test is a recursive algorithm. Starting with
the sector containing the viewpoint, all the portals of the current sector are
clipped against the view frustrum. If any of them are visible (i.e. not clipped
away completely), the sector on the other side is rendered recursively: that
is, it is drawn (along with any objects in it), becomes the current sector, and
has its portals tested. This technique can efficiently clip away large sections
of a complex environment by simply ignoring anything which cannot be seen
through the appropriate sector.

Portal engines can, however, be made to achieve more than simple vis-
ibility testing. If each sector is treated as a separate piece of independent
space, and portals are consider unidirectional ‘links’ to another sector, then it
becomes possible to construct environments which are physically impossible.

Figure 1: How to create a non-Euclidean triangular room

Figure 1 shows the derivation of one such environment, which was con-
sidered in a Usenet discussion [1]. In this figure, each pair of portals is
mutually linked, effectively making the portal connections bidirectional.

1a shows a square room containing a pillar, with portals positioned so as
to provide effective visibility culling around the pillar without any subdivi-
sion of the polygons of which the room consists. 1b shows an ‘exploded view’
of how this room can be constructed from separate, yet linked, sectors. In
1c, however, one of the sides of the room has been removed, and the por-
tals either side linked to eachother. The room now has three sides, and is

1

thus a triangle; however, each corner is now clearly a right angle. Instead of
summing to 180◦, they sum to 270◦; this is not a triangle possible in ‘normal’
space.

This also highlights one of the main complications of such a ‘full’ portal
engine: it is no longer sufficient to simply pass a sector’s geometry to the
rendering system (e.g. OpenGL) when it is visible. It is also potentially
necessary to perform transforms upon the sector such that the portals on
either side align correctly. In the case of figure 1c, from the topmost side in
the diagram, to render the bottommost side through the portal, it must be
rotated 90◦anticlockwise and translated such that it ‘connects’ to the topmost
side.

A Mandala is a ritualistic geometric design used in meditation in some
religions as a symbol for the universe. Discordianism’s Mandala is a set of five
interlocking rings in an impossible configuration, which inspired the name.

2 Analysis

2.1 Existing systems

My introduction to the idea of using linked polygonial surfaces to create
‘impossible’ geometry came from the Unreal engine, which uses a conven-
tional BSP1 approach to visibility, along with a few others, such as ‘zone
portals’: simple portals which define how to cut the static world into zones
(sectors). Unreal allows zones with a single portal to be declared ‘Warp-
Zones’ [2], which may then link to one other WarpZone, causing the por-
tals to lead to eachother. These zones need to exist as an area of physical
‘overlap’ space, which is theoretically never seen; in reality, however, this
technology is barely used in Unreal engine games, and thus the implemen-
tation is not well-maintained. There are many, many limitations (not least
that physics-controlled objects will pass straight through the portal into the
overlap space), and it is very obviously a ‘stuck on’ feature.

Prey, an unreleased game with a troubled history, recently revived, origi-
nally used a full portal engine, as described by William Scarboro a few years
after he left the original development team [1]. A video interview by Jess
Holderbaum of gaming site ‘Infinite MHz’ with developer Paul Schuytema
in 1998 showed some of the effects achieved with the technology, including
the dynamic creation of portals floating in midair by the player and an al-
lusion to the multiplayer gameplay implications of this ability. The engine
was capable of rendering complex scenes, by the standards of the time, with
impressive speed thanks to the portal culling; it was also capable of handling
‘impossible’ space, as demonstrated by a spinning gyroscope whose centre
was a portal to a different part of the level.

The new version uses the DOOM 3 engine, again BSP-based, but little
detail is availible yet; a video trailer released at the gaming conference E3

1Binary Split Partitioning, a commonly used visibility culling approach

2

showed that portal effects were in use, yet presumably these have also been
shimmed on top of the licensed engine.

2.2 Goals

The goals, as defined in the project proposal, were:

1. Implement a basic portal-based engine.

2. Implement a basic editor or editing mode (the latter is a better demon-
stration of the lack of a need for precompilation with portal engines, as
opposed to BSP) for the creation of environments.

3. Allow object navigation through portals (e.g. being able to walk/fly the
camera through them).

4. Allow OpenGL lighting through portals (should be later extendable to
positional sound).

5. Ensure that engine can deal with infinitely recursive portals (i.e. does
not hang).

6. Ensure that engine deals with nontrivial cases such as mirrors.

7. Implement decals and ‘spraycan’ so as to better demonstrate non-Euclidean
geometry.

8. Allow engine to cope with portals where the two ‘sides’ do not match in
size by scaling objects that cross through. Demonstrate with a hallway
of infinite growth/shrinking.

9. Improve handling of infinitely recursive portals by using high-recursion-
depth startup texture generation to produce ‘termination’ textures, sim-
ilar to aspects of “Images for Accelerating Architectural Walkthroughs” [3].

10. Allow point distance calculations through portals (e.g. for trivial, sphere-
based collision detection).

11. Allow tracing of rays (for projectile collision detection) through portals;
possibly add a ‘laser pointer’ to demonstrate.

12. Allow/demonstrate graph-based pathfinding (e.g. trivial A* implemen-
tation) through portals (requires a combination of the above two points
to autogenerate a graph from a set of nodes: must connect nodes if in
range and path clear).

13. Per-polygon collision detection of objects partway through a portal
(again depends on tracing of rays).

These goals formed an approximate ‘sliding scale’ of scope, and it was not
expected to complete all, or even most, of them in the time availible; they
instead formed a ‘direction’ for the engine to take.

3

3 Design

3.1 Architecture

3.1.1 Overview

Mandala has an object-oriented design, and is designed to be decoupled from
the application using it. In the demo application, the source mandalademo.c

provides the entry point and command-line parsing, then instanciates and
uses a mandala object and a world subclass instance which sets up a sample
environment, demoworld.

A quick summary of the classes comprising Mandala:

mandala The root object of the system, handing operations such as chang-
ing resolution and simulation rate control.

controls A set of controls: dispatches SDL events and inputs to action ob-
jects.

action An abstraction action (such as ‘move forward’) and a binding to a
concrete input.

world An environment containing entities.

entity An item in the world; this may be a sector, or an object in a sector.

mesh A collection of polygons which may be rendered as one, and automat-
ically cached into an OpenGL display list.

polygon A single, planar polygon with any number of points exceeding
three. May have a target polygon and entity, in which case it is a por-
tal. May have a texture. Has utility methods such as automatic normal
generation.

vector A translation—its usual role—with an optional rotation component
applied afterwards, used to position entities. Has many utility methods,
such as normalisation, dot and cross products.

matrix4 A 4 × 4 matrix, with methods for vector/matrix and scalar matrix
multiplication, including on its transposition.

texture A handle to an OpenGL texture; handles the loading and dealloca-
tion of such.

bag High-performance dynamic array which does not guarantee ordering on
removal; most operations are O(1).

tricks A set of utility functions, including a memory-tracing system to detect
leaks and corruptions, and various common definitions.

4

3.1.2 Control system

A detailed description of the control system is beyond the scope of this report,
but the basic operation is that actions are created and registered with the
controls object for each action which can be taken. These actions are then
bound to SDL inputs, with a sensitivity scale: e.g. bind the action for looking
left and right to the X mouse axis, sensitivity 0.9. Additional bindings can
be made, which will create a chain of actions, all of which report back to
the head action. This system is sufficiently generic to allow, for example, the
look action to also be bound to a pair of keyboard keys.

When the mandala object runs through the main loop, it dispatches input
events to the controls object, which then finds any appropriate actions. All
inputs map to a ‘state’ of the action on the scale -1 to 1, which provides input
device agnosticism. There is also a state machine on each action which can
be used to determine if it has been ‘pressed’—has become nonzero since last
tested. This allows keypresses to be reliably trapped even at low framerates.

3.1.3 Entities

An entity is a generalisation of both a sector an an object. An entity is simply
an item in the world: how it looks and what it does are defined by five
‘behaviours’:

act Act independent of any other entities; this behaviour is theoretically par-
allelisable.

interact Interact with another entity; the set of entities this is called with
can be controlled by flags such as ‘onlycolliding’.

display Render the entity. The world positions the OpenGL coordinate sys-
tem and handles the matrix stack.

collide Detect a collision between a line segment and this entity, and return
information such as the point of impact, and the normal at this point
(for bouncing).

destroy Deallocate all memory and release all resources used by this object.

Each behaviour is controlled by a field, such as acttype, which accepts
constants for basic behaviours, such as A NONE, or A SIMPLEMOTION. All be-
haviours also have a FUNCTION constant, which allows a function pointer
such as fact to be set, allowing completely custom behaviour.

When an entity wants to move, it sets a desiredmovement vector of itself,
rather than directly modifying its position. This allows the world to perform
collision detection during the movement. Collisions are stored by the world
in a bag, and the entity can then respond to them the next time it acts.

Entities form a tree structure; top-level entities are effectively sectors, and
the entities they contain are objects. Children of those ‘object’ entities can be
used to create hierarchical objects, such as robotic arms.

5

Entities may have meshes, which may be used for display or collision
detection. These meshes may contain portal polygons, effectively laying a
directed graph of portals over the tree structure of entities. While this com-
plicates the rendering process, this was considered worthwhile for the po-
tential advantages.

3.2 Relevant light set

Lights cannot be simply rendered recursively like geometry; the way OpenGL
works requires that they are set up prior to the polygons which need to be lit
are drawn. As such, a trivial solution would be to recurse through the visible
set of portals, as if rendering, before the actual rendering stage, setting up
lights. While this would work, it would be inefficient.

Instead, a relevant light set can be calculated for each entity when lights
change, which records which lights are in range of that entity (allowing for
portal traversals), and what their relative positions are. When that entity
is to be rendered, the appropriate lights can be read from this set and told
to set up first (because lights are actually entities with a displaytype of
D LIGHT, this is a simple entity display() call). Afterwards, these lights can
be deactivated again. This also effectively reduces the number of hardware
lights required at any one point, which should greatly improve performance
in heavily-lit environments.

4 Implementation

4.1 Technologies

Mandala is written in C (C99 standard), as it is the language for which
bindings for many libraries exist, and is suitable for applications which re-
quire good performance. It uses OpenGL and SDL for graphics and win-
dowing/input, as both are well-designed, stable, cross-platform APIs. The
SDL image library is used for texture loading.

4.2 Portal mapping

4.2.1 Graphical

The transforms required for changing the co-ordinate system to that of an
entity on the other side of a portal are left to OpenGL, both for simplicity
and speed.

Figure 2 shows the required transforms to move a disconnected sector
(show in grey), stage a, to a correctly positioned sector for the portal, stage
b. The thick lines represent the normals of the sides they are attached to,
which are portals. First, a translation is made from the centre of the entity
(i.e. the origin of the current co-ordinate system) to the polygon’s centre.
Now a rotation is required, such that the normals of the two portal polygons

6

Figure 2: Transforming a sector to correctly align portals

point in exactly opposite directions. This is performed around a unit vector
which is the result of the cross product between the two normals: this gives
a suitable perpendicular. The angle to rotate by is the inverse cosine of of the
dot product of the normals: i.e. the angle between them. If the cross product
results in a zero-length vector, then the normals are parallel. This means that
the normals are either already in opposite directions, in which case no action
is required, or identical, in which case a half rotation is required.

Finally, a translation must be made from the centre of the target polygon
to the origin of the target entity. Because this is now in the co-ordinate
system of the target entity, this is simply a translation by the inverse of the
target polygon’s centre.

4.2.2 Point

Much of the mathematics in this section was determined with the great
assistance of Jim Gerrard.

Mapping points across portals is important for many purposes, not least
that of object navigation. Other applications include tracing rays for collision
detection, and calculating relative light positions. This is achieved by a pair
of methods of polygon which map points to and from a polygon-relative co-
ordinate system, where the normal is the positive Z axis. By mapping a point
into the co-ordinate system of the source portal’s polygon, then unmapping
it from that of the target polygon, the point will be transformed into the co-
ordinate system of the entity on the other side of the portal. This mapping is
also useful for collision detection, as the Z value of the point in polygon co-
ordinates is its distance from the polygon’s plane; if two points representing
the start and end of a movement have Z-values of a different sign, then they
have cross the plane and collision detection should continue to see if the
intersection point is within the boundaries of the polygon.

If we define x, y and z as the polygon normal, and let:

α =
√

1− z2

then the matrix to rotate a point by aligning the normal to the positive Z axis
is:  xz

α
yz
α

−α
−y
α

x
α

0
x y z


7

and the inverse for this matrix is simply itself transposed. There is a singu-
larity if |z| = 1, as α will be zero, and will cause divisions by zero. Thinking
geometrically, this is the case where the normal is already aligned, although
possibly flipped. The solution is to instead use the identity matrix multiplied
by z; this will be the identity matrix (i.e. do nothing) if the normal is already
the positive Z axis, and will be a simple flip if it is the negative axis.

Next, a rotation around the Z axis needs to be performed to lock down an
unwanted degree of freedom: rotation around the normals. This is achieved
by specifying a point on the polygon as the ‘anchor point’, and aligning it to
the positive X axis. If ax and ay are the transformed offset of this anchor from
the centre of the polygon, then the rotation is a simple 2D matrix (which can
be padded to 3D with the identity matrix):(

ax ay

−ay ax

)
The derivation of these matricies is too lengthy for this report, but is

based on representing the normal as an azimuth (rotation around Z axis)
and declination (rotation around X axis transformed by azimuth), then using
trigonometric identities to simplify.

4.3 Results

The implemented engine has a largely complete rendering and entity sys-
tem, with collision detection; however, there are some unresolved issues.
Crucially, portal traversal by the camera is nonfunctional, which has limited
the number of effects demonstratable. Camera/portal collisions are detected
successfully, but the rotation is not mapped across portals, and the position
currently tends to get ‘stuck’ in the plane of a portal.

Nevertheless, some portal effects are demonstratable. In the demonstra-
tion environment, there are three top-level entities (i.e. sectors): the start-
ing sector, which is textured with debugging textures showing which face
is which, and providing alignment information on the floor; a second sec-
tor, which has grey walls; and a diagonal corridor section, with wooden and
metallic texturing. All textures were generated in The GIMP: using the seam-
less tiling filter, plasma-generation filter, and stock pattern fills.

Most portals in the demonstration environment are bidirectional: that is,
they are in matched, mutually linked, pairs. The starting sector is connected
by a single portal to the second sector. The second sector connects on both
the left and right sides to different ends of the corridor sector: this creates an
infinite loop of corridor sections and ‘second’ rooms. The second sector’s roof
also connects to the single portal of the start room: this is a unidirectional
connection, else the start room’s portal would have two destinations, which is
not possible. The bright green lines in all screenshots are a rendering option
(which can be changed in the world object) showing the portal outlines.

Figure 3 shows the view from the first sector, looking through the second
sector, up to its roof, where the first sector is repeated, rotated. The dark,

8

Figure 3: Screenshot: the camera sees itself in a ‘copy’ of the current sector

multicoloured pyramid is the representation of the camera: it is looking at
itself.

In figure 4, the camera has passed backwards through the wall of the
first sector, and been risen to show the extent of the environment. Note that
the sectors form an apparent loop, yet all corridors are the same. This also
demonstrates the engine’s ability to limit recursion in cases where the portal
graph is cyclic.

Figure 5 is from a viewpoint slightly to the left, such that the leftmost
portal of the second room is now not visible: while it is inside the view
frustrum, it is facing the wrong way and has been backface culled. As such,
the corridors and other structures leading from this are not rendered: note
the lower visible entity (‘visent’) count in the window title.

Figure 6 is from much the same viewpoint as figure 4; the sector visible
at the bottom is the start sector. However, the destination of its portal has
been changed, at runtime (via a custom act method which detects that an
associated action has been pressed), to one end of the corridor. Hence, a
different level structure appears. This demonstrates the lack of a requirement
for precomputation.

9

Figure 4: Screenshot: the full ‘ring’ created by the test data

5 Testing

Testing was performed continually during development; formal testing was
not a practical option given the time constraints and difficult with formalising
tests for a graphical project. Despite a modular design, these projects do not
lend themselves easily to unit testing, so the majority of testing was white-
box; verifying that a change was functioning as intended.

An exception was the mapping of points to polygon-relative coordinates:
this was informally, individually tested on a set of data, using test harness
code which printed the results out to the console. This harness code was also
used to test the reverse-transform code, by applying it to the transformed co-
ordinates and checking for discrepancies between the original point and the
result of the unmapping.

Testing was performed on a small range of hardware.

6 Evaluation

6.1 Reflection

It is disappointing that portal traversal was not fixed in time for the final
presentation; however, Mandala does support rendering of portals, handling

10

Figure 5: Screenshot: part of the ring is culled

cases such as infinite recursion (cycles in the portal graph), and has much of
the architecture required to complete the goals with time.

Attempting to design and implement and entire, extensible engine, as op-
posed to a one-off technical demo on top of a simplistic framework, was an
excessive target for a single course assignment; this situation was not helped
by the need/desire to develop large sections of code (such as the entity sys-
tem, and the control system to move the camera) before work on actual
portal rendering and mapping could begin. If repeating this project in the
scope of the Advanced Computer Graphics course, the ‘engine’ components
would probably be dropped as goals.

6.2 Future work

Evidently, there are many goals left to implement, including editing (and se-
rialisation) of entity structures, as entering world data in the form of C func-
tion invocations is neither user-friendly nor scalable. Lighting is designed,
and the methods are in place to implement it correctly; they merely need the
designed algorithm to be programmed in. Collision detection in the form of
raytracing across portals is in the same state, with much of the code imple-
mented.

The entity system could potentially be improved: defining new behaviours,

11

Figure 6: Screenshot: the same initial room, with its portal target changed
to the corridor

mechanisms for them to reference any required state, and arranging proper
deallocation is awkward in C. Ultimately, the optimum approach would be
to adopt a high-level scripting system with garbage collection, as the Un-
real engine does with UnrealScript [4]. Rather than developing a whole
new language, possible candidates for embedding are PLT-Scheme, Perl, Lua,
and JavaScript. Languages which support closures would greatly simplify
behaviour writing and make pointers such as actdata redundant. Failing
this, allowing multiple behaviour types to be chained would be greatly use-
ful, allowing entities with A SIMPLEMOTION actions to also have a custom,
function-based action which operates on, for example, an action. The de-
struction behaviour would especially benefit from being able to ‘inherit’ the
default behaviour and add additional, user functions to deallocate extra data.

Once these changes are made, I believe that Mandala is a seriously fea-
sible engine to use for experimenting with the gameplay implications of im-
possible geometries.

References

[1] Various, “Usenet thread ‘Portal Engines’,” 1999. Viewed online at
http://groups.google.com/group/comp.graphics.algorithms/

12

http://groups.google.com/group/comp.graphics.algorithms/browse_thread/thread/d8e6be3323c9f5f8/?fwc=1
http://groups.google.com/group/comp.graphics.algorithms/browse_thread/thread/d8e6be3323c9f5f8/?fwc=1

browse thread/thread/d8e6be3323c9f5f8/?fwc=1.

[2] Various, “WarpZoneInfo documentation on UnrealWiki.” Viewed online
at http://wiki.beyondunreal.com/wiki/WarpZoneInfo.

[3] M. M. Rafferty, D. G. Aliaga, V. Popescu, and A. A. Lastra, “Images for
Accelerating Architectural Walkthroughs,” IEEE Computer Graphics & Ap-
plications, vol. 18, no. 6, pp. 38–45, 1998.

[4] T. Sweeney and M. Hendriks, “UnrealScript Language Ref-
erence.” Viewed online at http://udn.epicgames.com/Two/

UnrealScriptReference.

A CD Contents

prb102-mandala.zip Mandala source code, resources and build system.

advcompgraphrep.pdf This report in PDF format.

A.1 Building Mandala from source

A.1.1 Requirements

To build Mandala from source, you will need:

• OpenGL 1.1 or higher

• SDL (Simple Directmedia Library)

• SDL image

• GNU C library (libc)—required for argp command line parser

A.1.2 Build options

There are five preprocessor defines which control the features of the resultant
binary.

NDEBUG Standard C define which will disable some pedantic sanity checks
(via assert()). Can be used for release build.

DEBUG Enables some additional sanity checks.

DEBUGMEMORY Enables memory allocation (heap) tracing. This will find
memory leaks and other errors (such as attempts to deallocate unallo-
cated memory). Requires DEBUG.

DEBUGMEMORYQUIETLY By default, DEBUGMEMORY is very verbose, which
can slow down startup and shutdown. This disables all non-error mem-
ory trace output.

13

http://groups.google.com/group/comp.graphics.algorithms/browse_thread/thread/d8e6be3323c9f5f8/?fwc=1
http://groups.google.com/group/comp.graphics.algorithms/browse_thread/thread/d8e6be3323c9f5f8/?fwc=1
http://wiki.beyondunreal.com/wiki/WarpZoneInfo
http://udn.epicgames.com/Two/UnrealScriptReference
http://udn.epicgames.com/Two/UnrealScriptReference

STENCILCLIP Enables stencil clipping. This allows the renderer to better
handle overlapping geometry, but may affect performance on low-end
hardware.

The Makefile can accept these arguments in the CFLAGSEX variable; some
default values (debug and release builds) are provided in comments.

A.1.3 Building under UNIX R©-like platforms

Mandala has been compiled successfully on Linux systems with GCC and
GNU make, and should work on other, similar platforms. If using a compiler
other than gcc, change CC and LD in the Makefile to your C99 compiler and
linker respectively, and check the values of CFLAGS and LDFLAGS. To build,
change to the mandala directory (above src) and run make. This should
generate a mandalademo binary.

A.1.4 Building under Windows R©

Mandala has not been compiled under Windows R©, although it has been
implemented using cross-platform technologies. Simply compiling all the
.c files together into a binary, linked with the appropriate libraries, should
work.

A.2 Controls

The following keys affect the demonstration application:

Escape Quit immediately.

Backtick Toggle fullscreen mode.

Mouse motion Rotate camera (look around).

W, A, S, D Standard FPS movement: W and S move forwards and back-
wards; A and D strafe.

Space, Ctrl Move directly up and down.

9 Toggle the sector target of the start room between the second room and
the corridor.

14

	Contents
	Acknowledgements
	Introduction and Background
	Analysis
	Existing systems
	Goals

	Design
	Architecture
	Overview
	Control system
	Entities

	Relevant light set

	Implementation
	Technologies
	Portal mapping
	Graphical
	Point

	Results

	Testing
	Evaluation
	Reflection
	Future work

	References
	CD Contents
	Building Mandala from source
	Requirements
	Build options
	Building under UNIX®-like platforms
	Building under Windows®

	Controls

